View by:
44. Gattas, J. M., Reid, C., Dakin, T., Shanks, J., & McGavin, R. L. (2024). Board assignment heuristics for nail laminated out-of-grade timber. Australian Journal of Civil Engineering, 1-14. https://doi.org/10.1080/14488353.2024.2403049
43. Lee, T. U., Lu, H., Ma, J., Ha, N. S., Gattas, J. M., & Xie, Y. M. (2024). Self-locking and stiffening deployable tubular structures. Proceedings of the National Academy of Sciences, 121(40), e2409062121. https://doi.org/10.1073/pnas.2409062121
42. Abu-Saleem, M., & Gattas, J. M. (2024). Eccentric compression behaviour of hybrid timber-cardboard sandwich columns. Construction and Building Materials, 440, 137365. https://doi.org/10.1016/j.conbuildmat.2024.137365
41. Bravo, T. P., Gattas, J. M., Bravo, F., Astroza, R., & Maluk, C. (2024). Experimental assessment of modal properties of hybrid CFRP-timber panels. Construction and Building Materials, 438, 137075. https://doi.org/10.1016/j.conbuildmat.2024.137075
40. Cui, W., Gattas, J. M., & Heitzmann, M. T. (2024). Manufacture and structural performance of modular hybrid FRP–timber thin-walled beams. Construction and Building Materials, 435, 136705. https://doi.org/10.1016/j.conbuildmat.2024.136705
39. Bahremandi-Tolou, M., Wang, C., Gattas, J. M., & Luo, D. (2024). Curved surface form-finding with self-shaping perforated plates. Architectural Intelligence, 3(1), 1-16. https://doi.org/10.1007/s44223-024-00059-y
38. Abu-Saleem, M., & Gattas, J. M. (2024). Fabrication and structural characterisation of hybrid timber-cardboard sandwich beams. Engineering Structures, 305, 117678. https://doi.org/10.1016/j.conbuildmat.2024.136705
37. Wang, Y., Bottazzi, V. S., & Gattas, J. M. (2024). A novel framework for set-based steel connection design automation. Computers & Structures, 298, 107366. https://doi.org/10.1016/j.compstruc.2024.107366
36. Jiang, J., Ottenhaus, L.-M., & Gattas, J. M. (2023). A parametric design framework for timber framing span tables. Australian Journal of Civil Engineering, 1–16. https://doi.org/10.1080/14488353.2023.2227432
35. Tetlak, T. B., Gattas, J. M., & Maluk, C. (2023). Experimental study on the effects of scale on the static and dynamic behaviour of glulam and hybrid-glulam beams. Construction and Building Materials, 369, 130563. https://doi.org/10.1016/j.conbuildmat.2023.130563
34. Lee, T.-U., Gattas, J. M., & Xie, Y. M. (2022). Bending-active kirigami. International Journal of Solids and Structures, 254, 111864. https://doi.org/10.1016/j.ijsolstr.2022.111864
33. Hodge, G., & Gattas, J. M. (2022). Geometric and semantic point cloud data for quality control of bridge girder reinforcement cages. Automation in Construction, 140, 104334. https://doi.org/10.1016/j.autcon.2022.104334
32. Xin, Z.-Y., Baber, K., & Gattas, J. M. (2022). A novel tension strap connection for rapid assembly of temporary timber structures. Engineering Structures, 262, 114320. https://doi.org/10.1016/j.engstruct.2022.114320
31. Alqaryouti, Y., Fernando, D., & Gattas, J. M. (2021). Structural behaviour of folded timber sandwich structures. Thin-Walled Structures, 169, 108345. https://doi.org/10.1016/j.tws.2021.108345
30. Ya, O., Fernando, D., Sriharan, J., Gattas, J. M., & Zhang, S. (2021). A nonlinear beam-spring-beam element for modelling the flexural behaviour of a timber-concrete sandwich panel with a cellular core. Engineering Structures, 244, 112785. https://doi.org/https://doi.org/10.1016/j.engstruct.2021.112785
29. Lee, T.-U., Chen, Y., Heitzmann, M. T., & Gattas, J. M. (2021). Compliant curved-crease origami-inspired metamaterials with a programmable force-displacement response. Materials & Design, 109859. https://doi.org/10.1016/j.ijmecsci.2023.108729
28. Bukauskas, A., Koronaki, A., Lee, T.-U., Ott, D., Al Asali, M. W., Jalia, A., et al.others. (2021). Curved-crease origami face shields for infection control. Plos one, 16(2), e0245737. https://doi.org/10.1371/journal.pone.0245737
27. Cui, W., Fernando, D., Heitzmann, M., & Gattas, J. M. (2021). Manufacture and structural performance of modular hybrid FRP-timber thin-walled columns. Composite Structures, 260, 113506. https://doi.org/10.1016/j.compstruct.2020.113506
26. Xin, Z., & Gattas, J. (2020). Structural behaviours of integrally-jointed plywood columns with knot defects. International Journal of Structural Stability and Dynamics. https://doi.org/10.1142/S021945542150022X
25. Baber, K. R., Burry, J. R., Chen, C., Gattas, J. M., & Bukauskas, A. (2020). Inventory constrained design of a timber funicular structure. SN Applied Sciences, 2(9), 1–19. https://doi.org/10.1007/s42452-020-03314-9
24. Shi, Q., Heitzmann, M. T., & Gattas, J. M. (2020). Nonlinear rotational stiffness and clash prevention in perforated steel fold lines. Engineering Structures, 209, 110218. https://doi.org/10.1016/j.engstruct.2020.110218
23. Mukhopadhyay, T., Ma, J., Feng, H., Hou, D., Gattas, J. M., Chen, Y., & You, Z. (2020). Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature. Applied Materials Today, 19. https://doi.org/10.1016/j.apmt.2019.100537
22. Ou, Y., Gattas, J. M., Fernando, D., & Torero, J. L. (2019). Experimental investigation of a timber-concrete floor panel system with a hybrid glass fibre reinforced polymer-timber corrugated core. Engineering Structures, 109832. https://doi.org/10.1016/j.engstruct.2019.109832
21. Ou, Y., Fernando, D., & Gattas, J. M. (2019). Experimental investigation of a novel concrete-timber floor panel system with digitally fabricated FRP-timber hollow core component. Construction and Building Materials, 227, 116667. https://doi.org/10.1016/j.conbuildmat.2019.08.048
20. Alqaryouti, Y., Fernando, D., & Gattas, J. (2019). Structural behavior of digitally fabricated thin-walled timber columns. International Journal of Structural Stability and Dynamics, 19(10), 1950126. https://doi.org/10.1142/S0219455419501268
19. Plasencia Alava, K. B., McCann, L. K., Hodge, G., Baber, K., & Gattas, J. M. (2019). Computational design and experimental behaviour of deployable mass timber arches. Journal of the International Association for Shell and Spatial Structures, 60(1), 90–100. https://doi.org/10.20898/j.iass.2019.199.030
18. Al-Qaryouti, Y., Baber, K., & Gattas, J. M. (2019). Computational design and digital fabrication of folded timber sandwich structures. Automation in Construction, 102, 27–44. https://doi.org/10.1016/j.autcon.2019.01.008
17. Lee, T.-U., Yang, X., Ma, J., Chen, Y., & Gattas, J. M. (2019). Elastic buckling shape control of thin-walled cylinder using pre-embedded curved-crease origami patterns. International Journal of Mechanical Sciences, 151, 322–330. https://doi.org/10.1016/j.ijmecsci.2018.11.005
16. Lee, T.-U., You, Z., & Gattas, J. M. (2018). Elastica surface generation of curved-crease origami. International Journal of Solids and Structures, 136-137, 13–27. https://doi.org/10.1016/j.ijsolstr.2017.11.029
15. Gattas, J. M., O’Dwyer, M. L., Heitzmann, M. T., Fernando, D., & Teng, J. (2018). Folded hybrid FRP-timber sections: Concept, geometric design and experimental behaviour. Thin-Walled Structures, 122, 182–192. https://doi.org/10.1016/j.tws.2017.10.007
14. Fernando, D., Teng, J., Gattas, J., & Heitzmann, M. (2017). Hybrid fibre-reinforced polymer–timber thin-walled structural members. Advances in Structural Engineering,
13. Shi, Q., Shi, X., Gattas, J. M., & Kitipornchai, S. (2017). Folded assembly methods for thin-walled steel structures. Journal of Constructional Steel Research, 138, 235–245. https://doi.org/10.1016/j.jcsr.2017.07.010
12. Gattas, J. M., Lv, W., & Chen, Y. (2017). Rigid-foldable tubular arches. Engineering Structures, 145, 246–253. https://doi.org/10.1016/j.engstruct.2017.04.037
11. Guo, Z., Gattas, J., Wang, S., Li, L., & Albermani, F. (2016). Experimental and numerical investigation of bulging behaviour of hyperelastic textured tubes. International Journal of Mechanical Sciences, 115, 665–675. https://doi.org/10.1016/j.ijmecsci.2016.07.026
10. Liu, X., Gattas, J. M., & Chen, Y. (2016). One-DOF superimposed rigid origami with multiple states. Scientific reports, 6, 36883. https://doi.org/10.1038/srep36883
9. Lee, T.-U., & Gattas, J. M. (2016). Geometric design and construction of structurally stabilized accordion shelters. Journal of Mechanisms and Robotics, 8(3), 031009. https://doi.org/10.1115/1.4032441
8. Fathers, R., Gattas, J. M., & You, Z. (2015). Quasi-static crushing of eggbox, cube, and modified cube foldcore sandwich structures. International Journal of Mechanical Sciences, 101, 421–428. https://doi.org/10.1016/j.ijmecsci.2015.08.013
7. Gattas, J. M., & You, Z. (2016). Design and digital fabrication of folded sandwich structures. Automation in Construction, 63, 79–87. https://doi.org/10.1016/j.autcon.2015.12.002
6. Xie, R., Chen, Y., & Gattas, J. M. (2015). Parametrisation and application of cube and eggbox-type folded geometries. International Journal of Space Structures, 30(2), 99–110. https://doi.org/10.1260/0266-3511.30.2.99
5. Gattas, J. M., & You, Z. (2015). Geometric assembly of rigid-foldable morphing sandwich structures. Engineering structures, 94, 149–159. https://doi.org/10.1016/j.engstruct.2015.03.019
4. Gattas, J. M., & You, Z. (2015). The behaviour of curved-crease foldcores under low-velocity impact loads. International Journal of Solids and Structures, 53, 80–91. https://doi.org/10.1016/j.ijsolstr.2014.10.019
3. Gattas, J. M., & You, Z. (2014). Miura-base rigid origami: Parametrizations of curved-crease geometries. Journal of Mechanical Design, 136(12), 121404. https://doi.org/https://doi.org/10.1115/1.4028532
2. Gattas, J. M., & You, Z. (2014). Quasi-static impact of indented foldcores. International Journal of Impact Engineering, 73, 15–29. https://doi.org/10.1016/j.ijimpeng.2014.06.001
1. Gattas, J. M., Wu, W., & You, Z. (2013). Miura-base rigid origami: Parameterizations of first-level derivative and piecewise geometries. Journal of mechanical design, 135(11), 111011. https://doi.org/10.1115/1.4025380
29. Wang, Y., Bottazzi, V. S., & Gattas, J. M. (2023). Using augmented reality for interactive value engineering of structural steel connections. In Proceedings of IASS annual symposia (Vol. 2023, pp. 1–12). International Association for Shell; Spatial Structures (IASS).
28. Baber, K. R., Barton, A., Burry, J. R., Chen, C., Gattas, J. M., Koch, C., & Ren, H. (2023). Inventory-constrained design of a variable small diameter round timber structure. In Proceedings of IASS annual symposia (Vol. 2023, pp. 1–12). International Association for Shell; Spatial Structures (IASS).
27. Gattas, J. M., Xu, S., Lu, Z., & Xin, Z.-Y. (2023). Post-tensioned strapping connections for rapid assembly of low-cost timber structures. In Proceedings of IASS annual symposia (Vol. 2023, pp. 1–12). International Association for Shell; Spatial Structures (IASS).
26. Bravo Tetlak, T., Gattas, J. M., & Maluk, C. (2023). Scaling study on viscous damping for glulam and hybrid glulam-FRP beams. In. World Conference on Timber Engineering (WCTE 2023).
25. Shi, Q., & Gattas, J. M. (2021). Finite element analysis and thick-panel clash behaviour of steel fold-lines. In International design engineering technical conferences and computers and information in engineering conference (Vol. 85451, p. V08BT08A040). American Society of Mechanical Engineers.
24. Luo, D., Gattas, J. M., & Tan, P. S. S. (2020). Real-time defect recognition and optimized decision making for structural timber jointing. In DigitalFUTURES 2020 international conference.
23. Slinger, V., Lao, D., Nguyen, V., Singh, S., & Gattas, J. (2021). Assessing the viability of visual vibrometry for use in structural engineering. In EASEC16 (pp. 1353–1363). Springer.
22. Baber, K. R., BURRY, J. R., CHEN, C., GATTAS, J. M., & BUKAUSKAS, A. (2019). Inventory constrained funicular modelling. In Proceedings of the IASS annual symposium 2019 ’form and force’.
21. Fernando, D., Torero, J. L., Gattas, J., Baber, K., Maluk, C., & Hidalgo, J. P. (2018). Novel technologies for tall timber buildings: Research streams and three solutions.
20. Shi, Q., Heitzmann, M. T., & Gattas, J. M. (2018). Analysis of steel origami tube with nonlinear rotational hinge stiffness. In Proceedings of the 25th australasian conference on the mechanics of structures and materials (ACMSM25).
19. Plasencia Alava, K. B., McCann, L., Baber, K., & Gattas, J. M. (2018). Reconfigurable assemblies of a deployable mass timber structure. In Proceedings of the IASS annual symposium 2018 ’creativity in structural design’.
18. Ramdoo, D., O’Connor, L., Guo, Zhiming, Fernando, D. N., Heitzmann, M. H., & Gattas, J. M. (2017). Low-cost folding fabrication of natural fibre composite thin walled columns. In Proceedings of 8th international conference on structural engineering and construction management (ISECM2017).
17. Ou, Y., Fernando, D., & Gattas, J. M. (2017). Novel hybrid FRP-timber-concrete floor panel system. In APFIS2017-6th asia-pacific conference on FRP in structures, singapore (pp. 1–7). Retrieved from https://www.research.ed.ac.uk/en/publications/novel-hybrid-frp-timber-concrete-floor-panel-system
16. Al-Qaryouti, Y., Wen, Y., Fernando, D., & Gattas, J. M. (2017). Comparison of plate and shell timber-composite sandwich structures. In Proceedings of IASS annual symposia (Vol. 2017, pp. 1–8). International Association for Shell; Spatial Structures (IASS). Retrieved from https://www.ingentaconnect.com/contentone/iass/piass/2017/00002017/00000017/art00001?crawler=true&mimetype=application/pdf
15. Lee, T., & Gattas, J. (2016). Experimental analysis of a reverse elastica pop-up geometry. In 8th international conference on fibre-reinforced polymer (FRP) composites in civil engineering (CICE 2016). Retrieved from https://espace.library.uq.edu.au/view/UQ:500012
14. Lee, T., & Gattas, J. (2016). Folded fabrication of composite curved-crease components. In 8th international conference on fibre-reinforced polymer (FRP) composites in civil engineering (CICE 2016). Retrieved from https://espace.library.uq.edu.au/view/UQ:500008
13. Guo, Z., Gattas, J., Karampour, H., Wang, S., Albermani, F., et al. (2016). Numerical analysis on the buckling behaviour of curved-crease origami pipelines. In The twelfth ISOPE pacific/asia offshore mechanics symposium. International Society of Offshore; Polar Engineers. Retrieved from https://espace.library.uq.edu.au/view/UQ:499773
12. Garrett, D., You, Z., & Gattas, J. M. (2016). Curved crease tube structures as an energy absorbing crash box. In International design engineering technical conferences and computers and information in engineering conference (Vol. 50169, p. V05BT07A017). American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2016-59784
11. Al-Qaryouti, Y., Gattas, J. M., Shi, R., & McCann, L. (2016). Digital fabrication strategies for timber thin-walled sections. In High performance and optimum design of structures and materials II (Vol. 166, p. 415). WIT Press. https://doi.org/10.2495/HPSM160391
10. Hansen, B., Tan, J., Gattas, J. M., Fernando, D., & Heitzmann, M. (2016). Folded fabrication of FRP-timber thin-walled beams with novel non-uniform cross-sections. In World conference on timber engineering. Vienna University of Technology. Retrieved from https://espace.library.uq.edu.au/view/UQ:499767
9. Sevilla, K., & Gattas, J. (2015). Volunteering for success: Strategic design and implementation of the icarus program. In 26th australian association for environmental education (AAEE) conference (pp. 992–997). Australasian Association for Engineering Education. Retrieved from https://researchoutput.csu.edu.au/en/publications/volunteering-for-success-strategic-design-and-implementation-of-t
8. Fernando, D., Gattas, J. M., Teng, J. G., & Heitzmann, M. (2015). Hybrid thin-walled members made of FRP and timber. In The 12th international symposium on fiber reinforced polymers for reinforced concrete structures (FRPRCS-12) and the 5th asia-pacific conference on fiber reinforced polymers in structures (APFIS-2015) joint conference. Retrieved from https://espace.library.uq.edu.au/view/UQ:298c828
7. Shi, X., & Gattas, J. M. (2015). Design and folded fabrication of novel self-braced triangular structural sections and frames. In International conference on performance-based and life-cycle structural engineering (pp. 792–798). School of Civil Engineering, The University of Queensland. https://doi.org/10.14264/uql.2016.424
6. Gattas, J. M., & Chen, Y. (2015). Synthesis of folded frame structures from cube-type and eggbox-type kirigami geometry. In ASME 2015 international design engineering technical conferences and computers and information in engineering conference (pp. V05BT08A031–V05BT08A031). American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2015-46433
5. Cash, T. N., Warren, H. S., & Gattas, J. M. (2015). Analysis of miura-type folded and morphing sandwich beams. In ASME 2015 international design engineering technical conferences and computers and information in engineering conference, american society of mechanical engineers (pp. 1–9). https://doi.org/10.1115/DETC2015-46380
4. Gattas, J. M., & You, Z. (2014). Quasi-static impact response of single-curved foldcore sandwich shells. In International design engineering technical conferences and computers and information in engineering conference (Vol. 46377, p. V05BT08A044). American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2014-34826
3. Gattas, J. M., & You, Z. (2013). Quasi-static impact response of alternative origami-core sandwich panels. In International design engineering technical conferences and computers and information in engineering conference (Vol. 55942, p. V06BT07A032). American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2013-12681
2. Gattas, J. M., & You, Z. (2013). Rigid-foldable piecewise geometries. In F. Escrig & J. Sanchez (Eds.), New proposals for transformable architecture, engineering, and design. Proceedings of the first conference transformables 2013. School of architecture seville, spain (pp. 319–324). Editorial Starbooks.
1. Gattas, J. M. (2013). Morphing origami panels: Geometry and construction. In Proceedings of the 15th young researchers’ conference (pp. 40–41). IStructE.